Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

FMCHS: Advancing Traditional Chinese Medicine Herb Recommendation with Fusion of Multiscale Correlations of Herbs and Symptoms (2503.05167v1)

Published 7 Mar 2025 in cs.LG

Abstract: Traditional Chinese medicine (TCM) exhibits remarkable therapeutic efficacy in disease treatment and healthcare through personalized herb prescriptions. However, current herb recommendation models inadequately capture the multiscale relations between herbs and clinical symptoms, particularly neglecting latent correlations at the chemical-molecular scale. To address these limitations, we propose the Fusion of Multiscale Correlations of Herbs and Symptoms (FMCHS), an innovative framework that synergistically integrates molecular-scale chemical characteristics of herbs with clinical symptoms. The framework employs multi-relational graph transformer layers to generate enriched embeddings that preserve both structural and semantic features within herbs and symptoms. Through systematic incorporation of herb chemical profiles into node embeddings and implementation of attention-based feature fusion, FMCHS effectively utilizes multiscale correlations. Comprehensive evaluations demonstrate FMCHS's superior performance over the state-of-the-art (SOTA) baseline, achieving relative improvements of 8.85% in Precision@5, 12.30% in Recall@5, and 10.86% in F1@5 compared to the SOTA model on benchmark datasets. This work facilitates the practical application of TCM in disease treatment and healthcare.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.