Characterizations of $H^1$ and Fefferman-Stein decompositions of ${\rm BMO}$ functions by systems of singular integrals in the Dunkl setting (2503.04964v2)
Abstract: We extend the classical theorem of Uchiyama about constructive Fefferman-Stein decompositions of ${\rm BMO}$ functions by systems of singular integrals to the rational Dunkl setting. On $\mathbb{R}N$ equipped with a root system $R$ and a multiplicity function $k \geq 0$, let [ dw(\mathbf{x}) = \prod_{\alpha \in R} |\langle \alpha, \mathbf{x} \rangle|{k(\alpha)} \, d\mathbf{x} ] denote the associated measure, and let $\mathcal{F}$ stand for the Dunkl transform. Consider a system $(\theta_0, \theta_1, \theta_2, \dots, \theta_d)$ of functions on $\mathbb{R}N$ that are smooth away from the origin and homogeneous of degree zero, with $\theta_0(\xi) \equiv 1$. We prove that if [ \text{rank} \left( \begin{array}{ccccc} 1 & \theta_1(\xi) & \theta_2(\xi) & \ldots & \theta_d(\xi) \ 1 & \theta_1(-\xi) & \theta_2(-\xi) & \ldots & \theta_d(-\xi) \end{array} \right) = 2 \quad \text{for all } \xi \in \mathbb{R}N \text{ with } |\xi| = 1, ] then any compactly supported ${\rm BMO}(\mathbb{R}N, |\mathbf{x} - \mathbf{y}|, dw)$ function $f$ can be decomposed into [ f = g_0 + \sum_{j=1}d \mathbf{S}{{j}} g_j, \quad \left| \sum_{j=0}d g_j \right|{L\infty} \leq C |f|{\rm BMO}, ] where $\mathbf{S}{{j}} g = \mathcal{F}{-1}(\theta_j \mathcal{F}g)$. As a corollary, we obtain characterizations of the Hardy space $H1_{\rm Dunkl}$ by the system of singular integral operators $({\rm Id}, \mathbf{S}{{1}}, \mathbf{S}{{2}}, \dots, \mathbf{S}{{d}})$.