Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Speeding up Local Search for the Indicator-based Subset Selection Problem by a Candidate List Strategy (2503.04224v1)

Published 6 Mar 2025 in cs.NE

Abstract: In evolutionary multi-objective optimization, the indicator-based subset selection problem involves finding a subset of points that maximizes a given quality indicator. Local search is an effective approach for obtaining a high-quality subset in this problem. However, local search requires high computational cost, especially as the size of the point set and the number of objectives increase. To address this issue, this paper proposes a candidate list strategy for local search in the indicator-based subset selection problem. In the proposed strategy, each point in a given point set has a candidate list. During search, each point is only eligible to swap with unselected points in its associated candidate list. This restriction drastically reduces the number of swaps at each iteration of local search. We consider two types of candidate lists: nearest neighbor and random neighbor lists. This paper investigates the effectiveness of the proposed candidate list strategy on various Pareto fronts. The results show that the proposed strategy with the nearest neighbor list can significantly speed up local search on continuous Pareto fronts without significantly compromising the subset quality. The results also show that the sequential use of the two lists can address the discontinuity of Pareto fronts.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.