Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalized Federated Fine-tuning for Heterogeneous Data: An Automatic Rank Learning Approach via Two-Level LoRA (2503.03920v1)

Published 5 Mar 2025 in cs.LG and cs.CL

Abstract: We study the task of personalized federated fine-tuning with heterogeneous data in the context of LLMs, where clients collaboratively fine-tune a LLM (e.g., BERT, GPT) without sharing their local data, achieving personalization simultaneously. While recent efforts have applied parameter-efficient fine-tuning techniques like low-rank adaptation (LoRA) in federated settings, they typically use single or multiple independent low-rank adapters with predefined maximal and minimal ranks, which may not be optimal for diverse data sources over clients. To address this issue, we propose PF2LoRA, a new personalized federated fine-tuning algorithm built on a novel \emph{automatic rank learning approach via two-level LoRA}. Given the pretrained LLM whose weight is frozen, our algorithm aims to learn two levels of adaptation simultaneously: the first level aims to learn a common adapter for all clients, while the second level fosters individual client personalization. A key advantage of PF2LoRA is its ability to adaptively determine a suitable rank based on an individual client's data, rather than relying on a predefined rank that is agnostic to data heterogeneity. We present a synthetic example that highlights how PF2LoRA automatically learns the ground-truth rank for each client, tailoring the adaptation to match the properties of their individual data. Notably, this approach introduces minimal additional memory overhead, as the second-level adaptation comprises a small number of parameters compared to the first level. Our experiments on natural language understanding and generation tasks demonstrate that PF2LoRA significantly outperforms existing federated fine-tuning methods.

Summary

We haven't generated a summary for this paper yet.