Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Mixed-precision algorithms for solving the Sylvester matrix equation (2503.03456v1)

Published 5 Mar 2025 in math.NA and cs.NA

Abstract: We consider the solution of the general Sylvester equation $AX+XB=C$ in mixed precision. First, we investigate the use of GMRES-based iterative refinement (GMRES-IR) to solve the equation using implicitly its Kronecker product form: we propose an efficient scheme to use the Schur factors of the coefficient matrices as preconditioners, but we demonstrate that this approach is not suitable in the case of the Sylvester equation. By revisiting a stationary iteration for linear systems, we therefore derive a new iterative refinement scheme for the quasi-triangular Sylvester equation, and our rounding error analysis provides sufficient conditions for convergence and a bound on the attainable relative residual. We leverage this iterative scheme to solve the general Sylvester equation in mixed precision. The new algorithms compute the Schur decomposition of the matrix coefficients in low precision, use the low-precision Schur factors to obtain an approximate solution to the quasi-triangular equation, and iteratively refine it to obtain a working-precision solution to the quasi-triangular equation. However, being only orthonormal to low precision, the unitary Schur factors of $A$ and $B$ cannot be used to recover the solution to the original equation. We propose two effective approaches to address this issue: one is based on re-orthonormalization in the working precision, and the other on explicit inversion of the almost-unitary factors. We test these mixed-precision algorithms on various Sylvester and Lyapunov equations from the literature. Our numerical experiments show that, for both classes of equations, the new algorithms are at least as accurate as existing ones. Our cost analysis, on the other hand, suggests that they would typically be faster than mono-precision alternatives if implemented on hardware that natively supports low precision.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com