Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic block models with many communities and the Kesten--Stigum bound (2503.03047v2)

Published 4 Mar 2025 in math.PR, cs.SI, math.ST, and stat.TH

Abstract: We study the inference of communities in stochastic block models with a growing number of communities. For block models with $n$ vertices and a fixed number of communities $q$, it was predicted in Decelle et al. (2011) that there are computationally efficient algorithms for recovering the communities above the Kesten--Stigum (KS) bound and that efficient recovery is impossible below the KS bound. This conjecture has since stimulated a lot of interest, with the achievability side proven in a line of research that culminated in the work of Abbe and Sandon (2018). Conversely, recent work by Sohn and Wein (2025) provides evidence for the hardness part using the low-degree paradigm. In this paper we investigate community recovery in the regime $q=q_n \to \infty$ as $n\to\infty$ where no such predictions exist. We show that efficient inference of communities remains possible above the KS bound. Furthermore, we show that recovery of block models is low-degree hard below the KS bound when the number of communities satisfies $q\ll \sqrt{n}$. Perhaps surprisingly, we find that when $q \gg \sqrt{n}$, there is an efficient algorithm based on non-backtracking walks for recovery even below the KS bound. We identify a new threshold and ask if it is the threshold for efficient recovery in this regime. Finally, we show that detection is easy and identify (up to a constant) the information-theoretic threshold for community recovery as the number of communities $q$ diverges. Our low-degree hardness results also naturally have consequences for graphon estimation, improving results of Luo and Gao (2024).

Summary

We haven't generated a summary for this paper yet.