Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Efficient Long Context Fine-tuning with Chunk Flow (2503.02356v2)

Published 4 Mar 2025 in cs.DC

Abstract: Long context fine-tuning of LLMs(LLMs) involves training on datasets that are predominantly composed of short sequences and a small proportion of longer sequences. However, existing approaches overlook this long-tail distribution and employ training strategies designed specifically for long sequences. Moreover, these approaches also fail to address the challenges posed by variable sequence lengths during distributed training, such as load imbalance in data parallelism and severe pipeline bubbles in pipeline parallelism. These issues lead to suboptimal training performance and poor GPU resource utilization. To tackle these problems, we propose a chunk-centric training method named ChunkFlow. ChunkFlow reorganizes input sequences into uniformly sized chunks by consolidating short sequences and splitting longer ones. This approach achieves optimal computational efficiency and balance among training inputs. Additionally, ChunkFlow incorporates a state-aware chunk scheduling mechanism to ensure that the peak memory usage during training is primarily determined by the chunk size rather than the maximum sequence length in the dataset. Integrating this scheduling mechanism with existing pipeline scheduling algorithms further enhances the performance of distributed training. Experimental results demonstrate that, compared with Megatron-LM, ChunkFlow can be up to 4.53x faster in the long context fine-tuning of LLMs. Furthermore, we believe that ChunkFlow serves as an effective solution for a broader range of scenarios, such as long context continual pre-training, where datasets contain variable-length sequences.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.