Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deep Autoregressive Model for Dynamic Combinatorial Complexes (2503.01999v1)

Published 3 Mar 2025 in cs.LG and cs.SI

Abstract: We introduce DAMCC (Deep Autoregressive Model for Dynamic Combinatorial Complexes), the first deep learning model designed to generate dynamic combinatorial complexes (CCs). Unlike traditional graph-based models, CCs capture higher-order interactions, making them ideal for representing social networks, biological systems, and evolving infrastructures. While existing models primarily focus on static graphs, DAMCC addresses the challenge of modeling temporal dynamics and higher-order structures in dynamic networks. DAMCC employs an autoregressive framework to predict the evolution of CCs over time. Through comprehensive experiments on real-world and synthetic datasets, we demonstrate its ability to capture both temporal and higher-order dependencies. As the first model of its kind, DAMCC lays the foundation for future advancements in dynamic combinatorial complex modeling, with opportunities for improved scalability and efficiency on larger networks.

Summary

We haven't generated a summary for this paper yet.