Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Patch-wise Structural Loss for Time Series Forecasting (2503.00877v1)

Published 2 Mar 2025 in cs.LG

Abstract: Time-series forecasting has gained significant attention in machine learning due to its crucial role in various domains. However, most existing forecasting models rely heavily on point-wise loss functions like Mean Square Error, which treat each time step independently and neglect the structural dependencies inherent in time series data, making it challenging to capture complex temporal patterns accurately. To address these challenges, we propose a novel Patch-wise Structural (PS) loss, designed to enhance structural alignment by comparing time series at the patch level. Through leveraging local statistical properties, such as correlation, variance, and mean, PS loss captures nuanced structural discrepancies overlooked by traditional point-wise losses. Furthermore, it integrates seamlessly with point-wise loss, simultaneously addressing local structural inconsistencies and individual time-step errors. PS loss establishes a novel benchmark for accurately modeling complex time series data and provides a new perspective on time series loss function design. Extensive experiments demonstrate that PS loss significantly improves the performance of state-of-the-art models across diverse real-world datasets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.