Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
48 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

An interpretation of the Brownian bridge as a physics-informed prior for the Poisson equation (2503.00213v1)

Published 28 Feb 2025 in stat.ML, cs.LG, and physics.comp-ph

Abstract: Physics-informed machine learning is one of the most commonly used methods for fusing physical knowledge in the form of partial differential equations with experimental data. The idea is to construct a loss function where the physical laws take the place of a regularizer and minimize it to reconstruct the underlying physical fields and any missing parameters. However, there is a noticeable lack of a direct connection between physics-informed loss functions and an overarching Bayesian framework. In this work, we demonstrate that Brownian bridge Gaussian processes can be viewed as a softly-enforced physics-constrained prior for the Poisson equation. We first show equivalence between the variational form of the physics-informed loss function for the Poisson equation and a kernel ridge regression objective. Then, through the connection between Gaussian process regression and kernel methods, we identify a Gaussian process for which the posterior mean function and physics-informed loss function minimizer agree. This connection allows us to probe different theoretical questions, such as convergence and behavior of inverse problems. We also connect the method to the important problem of identifying model-form error in applications.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets