Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
10 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero-Shot and Efficient Clarification Need Prediction in Conversational Search (2503.00179v1)

Published 28 Feb 2025 in cs.IR, cs.AI, cs.CL, and cs.LG

Abstract: Clarification need prediction (CNP) is a key task in conversational search, aiming to predict whether to ask a clarifying question or give an answer to the current user query. However, current research on CNP suffers from the issues of limited CNP training data and low efficiency. In this paper, we propose a zero-shot and efficient CNP framework (Zef-CNP), in which we first prompt LLMs in a zero-shot manner to generate two sets of synthetic queries: ambiguous and specific (unambiguous) queries. We then use the generated queries to train efficient CNP models. Zef-CNP eliminates the need for human-annotated clarification-need labels during training and avoids the use of LLMs with high query latency at query time. To further improve the generation quality of synthetic queries, we devise a topic-, information-need-, and query-aware chain-of-thought (CoT) prompting strategy (TIQ-CoT). Moreover, we enhance TIQ-CoT with counterfactual query generation (CoQu), which guides LLMs first to generate a specific/ambiguous query and then sequentially generate its corresponding ambiguous/specific query. Experimental results show that Zef-CNP achieves superior CNP effectiveness and efficiency compared with zero- and few-shot LLM-based CNP predictors.

Summary

We haven't generated a summary for this paper yet.