Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond Words: A Latent Memory Approach to Internal Reasoning in LLMs (2502.21030v1)

Published 28 Feb 2025 in cs.CL and cs.AI

Abstract: Recent advances in LLMs have popularized the chain-of-thought (CoT) paradigm, in which models produce explicit reasoning steps in natural language. Although this approach improves interpretability and facilitates external auditing, it may not represent the most computationally efficient method for internal reasoning. In contrast, human cognition relies on implicit mental representations that recall past sensory and episodic information without requiring complete verbalization. In this paper, we propose a framework that integrates implicit mental representations into the internal reasoning processes of LLMs. Preliminary experiments indicate that incorporating an Implicit Memory Module (IMM) into a simple GPT model yields a reduction of between 35% and 57% in final training loss compared to a regular GPT baseline. The addition of an explicit interpretability channel (e.g., a chain-of-thought decoder) is straightforward to implement within this approach. We outline theoretical foundations, propose technical mechanisms to scale the memory module, and discuss how these ideas may lead to more efficient and robust reasoning, with optional future extensions for explicit auditability.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com