Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information-Theoretic Perspectives on Optimizers (2502.20763v1)

Published 28 Feb 2025 in cs.LG

Abstract: The interplay of optimizers and architectures in neural networks is complicated and hard to understand why some optimizers work better on some specific architectures. In this paper, we find that the traditionally used sharpness metric does not fully explain the intricate interplay and introduces information-theoretic metrics called entropy gap to better help analyze. It is found that both sharpness and entropy gap affect the performance, including the optimization dynamic and generalization. We further use information-theoretic tools to understand a recently proposed optimizer called Lion and find ways to improve it.

Summary

We haven't generated a summary for this paper yet.