Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gaussian Process Upper Confidence Bound Achieves Nearly-Optimal Regret in Noise-Free Gaussian Process Bandits (2502.19006v1)

Published 26 Feb 2025 in cs.LG

Abstract: We study the noise-free Gaussian Process (GP) bandits problem, in which the learner seeks to minimize regret through noise-free observations of the black-box objective function lying on the known reproducing kernel Hilbert space (RKHS). Gaussian process upper confidence bound (GP-UCB) is the well-known GP-bandits algorithm whose query points are adaptively chosen based on the GP-based upper confidence bound score. Although several existing works have reported the practical success of GP-UCB, the current theoretical results indicate its suboptimal performance. However, GP-UCB tends to perform well empirically compared with other nearly optimal noise-free algorithms that rely on a non-adaptive sampling scheme of query points. This paper resolves this gap between theoretical and empirical performance by showing the nearly optimal regret upper bound of noise-free GP-UCB. Specifically, our analysis shows the first constant cumulative regret in the noise-free settings for the squared exponential kernel and Mat\'ern kernel with some degree of smoothness.

Summary

We haven't generated a summary for this paper yet.