Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

ClassInvGen: Class Invariant Synthesis using Large Language Models (2502.18917v2)

Published 26 Feb 2025 in cs.PL and cs.SE

Abstract: Formal program specifications in the form of preconditions, postconditions, and class invariants have several benefits for the construction and maintenance of programs. They not only aid in program understanding due to their unambiguous semantics but can also be enforced dynamically (or even statically when the language supports a formal verifier). However, synthesizing high-quality specifications in an underlying programming language is limited by the expressivity of the specifications or the need to express them in a declarative manner. Prior work has demonstrated the potential of LLMs for synthesizing high-quality method pre/postconditions for Python and Java, but does not consider class invariants. In this work, we describe ClassInvGen, a method for co-generating executable class invariants and test inputs to produce high-quality class invariants for a mainstream language such as C++, leveraging LLMs' ability to synthesize pure functions. We show that ClassInvGen outperforms a pure LLM-based technique to generate specifications (from code) as well as prior data-driven invariant inference techniques such as Daikon. We contribute a benchmark of standard C++ data structures along with a harness that can help measure both the correctness and completeness of generated specifications using tests and mutants. We also demonstrate its applicability to real-world code by performing a case study on several classes within a widely used and high-integrity C++ codebase.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube