Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
114 tokens/sec
Gemini 2.5 Pro Premium
26 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
10 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
2000 character limit reached

Multi-LLM Collaborative Search for Complex Problem Solving (2502.18873v1)

Published 26 Feb 2025 in cs.AI and cs.CL

Abstract: LLMs often struggle with complex reasoning tasks due to their limitations in addressing the vast reasoning space and inherent ambiguities of natural language. We propose the Mixture-of-Search-Agents (MoSA) paradigm, a novel approach leveraging the collective expertise of multiple LLMs to enhance search-based reasoning. MoSA integrates diverse reasoning pathways by combining independent exploration with iterative refinement among LLMs, mitigating the limitations of single-model approaches. Using Monte Carlo Tree Search (MCTS) as a backbone, MoSA enables multiple agents to propose and aggregate reasoning steps, resulting in improved accuracy. Our comprehensive evaluation across four reasoning benchmarks demonstrates MoSA's consistent performance improvements over single-agent and other multi-agent baselines, particularly in complex mathematical and commonsense reasoning tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube