Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GNN-XAR: A Graph Neural Network for Explainable Activity Recognition in Smart Homes (2502.17999v1)

Published 25 Feb 2025 in cs.AI and cs.LG

Abstract: Sensor-based Human Activity Recognition (HAR) in smart home environments is crucial for several applications, especially in the healthcare domain. The majority of the existing approaches leverage deep learning models. While these approaches are effective, the rationale behind their outputs is opaque. Recently, eXplainable Artificial Intelligence (XAI) approaches emerged to provide intuitive explanations to the output of HAR models. To the best of our knowledge, these approaches leverage classic deep models like CNNs or RNNs. Recently, Graph Neural Networks (GNNs) proved to be effective for sensor-based HAR. However, existing approaches are not designed with explainability in mind. In this work, we propose the first explainable Graph Neural Network explicitly designed for smart home HAR. Our results on two public datasets show that this approach provides better explanations than state-of-the-art methods while also slightly improving the recognition rate.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets