2000 character limit reached
The defocusing Calogero--Moser derivative nonlinear Schr{ö}dinger equation with a nonvanishing condition at infinity (2502.17968v1)
Published 25 Feb 2025 in math.AP
Abstract: We consider the defocusing Calogero--Moser derivative nonlinear Schr{\"o}dinger equation\begin{align*}i \partial_{t} u+\partial_{x}2 u-2\Pi D\left(|u|{2}\right)u=0, \quad (t,x ) \in \mathbb{R} \times \mathbb{R}\end{align*}posed on $E := \left{u \in L{\infty}(\mathbb{R}): u' \in L{2}(\mathbb{R}), u'' \in L{2}(\mathbb{R}), |u|{2}-1 \in L{2}(\mathbb{R})\right}$. We prove the global well-posedness of this equation in $E$. Moreover, we give an explicit formula for the chiral solution to this equation.