Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Density Evolution from Snapshot Data (2502.17738v1)

Published 25 Feb 2025 in math.ST, stat.CO, and stat.TH

Abstract: Motivated by learning dynamical structures from static snapshot data, this paper presents a distribution-on-scalar regression approach for estimating the density evolution of a stochastic process from its noisy temporal point clouds. We propose an entropy-regularized nonparametric maximum likelihood estimator (E-NPMLE), which leverages the entropic optimal transport as a smoothing regularizer for the density flow. We show that the E-NPMLE has almost dimension-free statistical rates of convergence to the ground truth distributions, which exhibit a striking phase transition phenomenon in terms of the number of snapshots and per-snapshot sample size. To efficiently compute the E-NPMLE, we design a novel particle-based and grid-free coordinate KL divergence gradient descent (CKLGD) algorithm and prove its polynomial iteration complexity. Moreover, we provide numerical evidence on synthetic data to support our theoretical findings. This work contributes to the theoretical understanding and practical computation of estimating density evolution from noisy observations in arbitrary dimensions.

Summary

We haven't generated a summary for this paper yet.