Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
122 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Evolving Form and Function: Dual-Objective Optimization in Neural Symbolic Regression Networks (2502.17393v1)

Published 24 Feb 2025 in cs.NE

Abstract: Data increasingly abounds, but distilling their underlying relationships down to something interpretable remains challenging. One approach is genetic programming, which `symbolically regresses' a data set down into an equation. However, symbolic regression (SR) faces the issue of requiring training from scratch for each new dataset. To generalize across all datasets, deep learning techniques have been applied to SR. These networks, however, are only able to be trained using a symbolic objective: NN-generated and target equations are symbolically compared. But this does not consider the predictive power of these equations, which could be measured by a behavioral objective that compares the generated equation's predictions to actual data. Here we introduce a method that combines gradient descent and evolutionary computation to yield neural networks that minimize the symbolic and behavioral errors of the equations they generate from data. As a result, these evolved networks are shown to generate more symbolically and behaviorally accurate equations than those generated by networks trained by state-of-the-art gradient based neural symbolic regression methods. We hope this method suggests that evolutionary algorithms, combined with gradient descent, can improve SR results by yielding equations with more accurate form and function.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.