Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Minimum Copula Divergence for Robust Estimation (2502.16831v1)

Published 24 Feb 2025 in stat.ME

Abstract: This paper introduces a robust estimation framework based solely on the copula function. We begin by introducing a family of divergence measures tailored for copulas, including the (\alpha)-, (\beta)-, and (\gamma)-copula divergences, which quantify the discrepancy between a parametric copula model and an empirical copula derived from data independently of marginal specifications. Using these divergence measures, we propose the minimum copula divergence estimator (MCDE), an estimation method that minimizes the divergence between the model and the empirical copula. The framework proves particularly effective in addressing model misspecifications and analyzing heavy-tailed data, where traditional methods such as the maximum likelihood estimator (MLE) may fail. Theoretical results show that common copula families, including Archimedean and elliptical copulas, satisfy conditions ensuring the boundedness of divergence-based estimators, thereby guaranteeing the robustness of MCDE, especially in the presence of extreme observations. Numerical examples further underscore MCDE's ability to adapt to varying dependence structures, ensuring its utility in real-world scenarios.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.