Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EPERM: An Evidence Path Enhanced Reasoning Model for Knowledge Graph Question and Answering (2502.16171v1)

Published 22 Feb 2025 in cs.CL and cs.AI

Abstract: Due to the remarkable reasoning ability, LLMs have demonstrated impressive performance in knowledge graph question answering (KGQA) tasks, which find answers to natural language questions over knowledge graphs (KGs). To alleviate the hallucinations and lack of knowledge issues of LLMs, existing methods often retrieve the question-related information from KGs to enrich the input context. However, most methods focus on retrieving the relevant information while ignoring the importance of different types of knowledge in reasoning, which degrades their performance. To this end, this paper reformulates the KGQA problem as a graphical model and proposes a three-stage framework named the Evidence Path Enhanced Reasoning Model (EPERM) for KGQA. In the first stage, EPERM uses the fine-tuned LLM to retrieve a subgraph related to the question from the original knowledge graph. In the second stage, EPERM filters out the evidence paths that faithfully support the reasoning of the questions, and score their importance in reasoning. Finally, EPERM uses the weighted evidence paths to reason the final answer. Since considering the importance of different structural information in KGs for reasoning, EPERM can improve the reasoning ability of LLMs in KGQA tasks. Extensive experiments on benchmark datasets demonstrate that EPERM achieves superior performances in KGQA tasks.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com