Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Efficient Contrastive PAC Learning (2502.15962v1)

Published 21 Feb 2025 in cs.LG, cs.DS, and stat.ML

Abstract: We study contrastive learning under the PAC learning framework. While a series of recent works have shown statistical results for learning under contrastive loss, based either on the VC-dimension or Rademacher complexity, their algorithms are inherently inefficient or not implying PAC guarantees. In this paper, we consider contrastive learning of the fundamental concept of linear representations. Surprisingly, even under such basic setting, the existence of efficient PAC learners is largely open. We first show that the problem of contrastive PAC learning of linear representations is intractable to solve in general. We then show that it can be relaxed to a semi-definite program when the distance between contrastive samples is measured by the $\ell_2$-norm. We then establish generalization guarantees based on Rademacher complexity, and connect it to PAC guarantees under certain contrastive large-margin conditions. To the best of our knowledge, this is the first efficient PAC learning algorithm for contrastive learning.

Summary

We haven't generated a summary for this paper yet.