Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image Fusion for Cross-Domain Sequential Recommendation (2502.15694v2)

Published 31 Dec 2024 in cs.IR, cs.CV, and cs.LG

Abstract: Cross-Domain Sequential Recommendation (CDSR) aims to predict future user interactions based on historical interactions across multiple domains. The key challenge in CDSR is effectively capturing cross-domain user preferences by fully leveraging both intra-sequence and inter-sequence item interactions. In this paper, we propose a novel method, Image Fusion for Cross-Domain Sequential Recommendation (IFCDSR), which incorporates item image information to better capture visual preferences. Our approach integrates a frozen CLIP model to generate image embeddings, enriching original item embeddings with visual data from both intra-sequence and inter-sequence interactions. Additionally, we employ a multiple attention layer to capture cross-domain interests, enabling joint learning of single-domain and cross-domain user preferences. To validate the effectiveness of IFCDSR, we re-partitioned four e-commerce datasets and conducted extensive experiments. Results demonstrate that IFCDSR significantly outperforms existing methods.

Summary

We haven't generated a summary for this paper yet.