Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepSeek-V3, GPT-4, Phi-4, and LLaMA-3.3 generate correct code for LoRaWAN-related engineering tasks (2502.14926v3)

Published 19 Feb 2025 in cs.SE

Abstract: This paper investigates the performance of 16 LLMs in automating LoRaWAN-related engineering tasks involving optimal placement of drones and received power calculation under progressively complex zero-shot, natural language prompts. The primary research question is whether lightweight, locally executed LLMs can generate correct Python code for these tasks. To assess this, we compared locally run models against state-of-the-art alternatives, such as GPT-4 and DeepSeek-V3, which served as reference points. By extracting and executing the Python functions generated by each model, we evaluated their outputs on a zero-to-five scale. Results show that while DeepSeek-V3 and GPT-4 consistently provided accurate solutions, certain smaller models -- particularly Phi-4 and LLaMA-3.3 -- also demonstrated strong performance, underscoring the viability of lightweight alternatives. Other models exhibited errors stemming from incomplete understanding or syntactic issues. These findings illustrate the potential of LLM-based approaches for specialized engineering applications while highlighting the need for careful model selection, rigorous prompt design, and targeted domain fine-tuning to achieve reliable outcomes.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com