Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Structurally Disentangled Feature Fields Distillation for 3D Understanding and Editing (2502.14789v1)

Published 20 Feb 2025 in cs.CV

Abstract: Recent work has demonstrated the ability to leverage or distill pre-trained 2D features obtained using large pre-trained 2D models into 3D features, enabling impressive 3D editing and understanding capabilities using only 2D supervision. Although impressive, models assume that 3D features are captured using a single feature field and often make a simplifying assumption that features are view-independent. In this work, we propose instead to capture 3D features using multiple disentangled feature fields that capture different structural components of 3D features involving view-dependent and view-independent components, which can be learned from 2D feature supervision only. Subsequently, each element can be controlled in isolation, enabling semantic and structural understanding and editing capabilities. For instance, using a user click, one can segment 3D features corresponding to a given object and then segment, edit, or remove their view-dependent (reflective) properties. We evaluate our approach on the task of 3D segmentation and demonstrate a set of novel understanding and editing tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.