Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Objective Causal Bayesian Optimization (2502.14755v1)

Published 20 Feb 2025 in stat.ML and cs.LG

Abstract: In decision-making problems, the outcome of an intervention often depends on the causal relationships between system components and is highly costly to evaluate. In such settings, causal Bayesian optimization (CBO) can exploit the causal relationships between the system variables and sequentially perform interventions to approach the optimum with minimal data. Extending CBO to the multi-outcome setting, we propose Multi-Objective Causal Bayesian Optimization (MO-CBO), a paradigm for identifying Pareto-optimal interventions within a known multi-target causal graph. We first derive a graphical characterization for potentially optimal sets of variables to intervene upon. Showing that any MO-CBO problem can be decomposed into several traditional multi-objective optimization tasks, we then introduce an algorithm that sequentially balances exploration across these tasks using relative hypervolume improvement. The proposed method will be validated on both synthetic and real-world causal graphs, demonstrating its superiority over traditional (non-causal) multi-objective Bayesian optimization in settings where causal information is available.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets