Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
114 tokens/sec
Gemini 2.5 Pro Premium
26 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
10 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
2000 character limit reached

Giving AI Personalities Leads to More Human-Like Reasoning (2502.14155v2)

Published 19 Feb 2025 in cs.AI, cs.CL, and cs.CY

Abstract: In computational cognitive modeling, capturing the full spectrum of human judgment and decision-making processes, beyond just optimal behaviors, is a significant challenge. This study explores whether LLMs can emulate the breadth of human reasoning by predicting both intuitive, fast System 1 and deliberate, slow System 2 processes. We investigate the potential of AI to mimic diverse reasoning behaviors across a human population, addressing what we call the "full reasoning spectrum problem". We designed reasoning tasks using a novel generalization of the Natural Language Inference (NLI) format to evaluate LLMs' ability to replicate human reasoning. The questions were crafted to elicit both System 1 and System 2 responses. Human responses were collected through crowd-sourcing and the entire distribution was modeled, rather than just the majority of the answers. We used personality-based prompting inspired by the Big Five personality model to elicit AI responses reflecting specific personality traits, capturing the diversity of human reasoning, and exploring how personality traits influence LLM outputs. Combined with genetic algorithms to optimize the weighting of these prompts, this method was tested alongside traditional machine learning models. The results show that LLMs can mimic human response distributions, with open-source models like Llama and Mistral outperforming proprietary GPT models. Personality-based prompting, especially when optimized with genetic algorithms, significantly enhanced LLMs' ability to predict human response distributions, suggesting that capturing suboptimal, naturalistic reasoning may require modeling techniques incorporating diverse reasoning styles and psychological profiles. The study concludes that personality-based prompting combined with genetic algorithms is promising for enhancing AI's 'human-ness' in reasoning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.