Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

Explainable Distributed Constraint Optimization Problems (2502.14102v1)

Published 19 Feb 2025 in cs.AI

Abstract: The Distributed Constraint Optimization Problem (DCOP) formulation is a powerful tool to model cooperative multi-agent problems that need to be solved distributively. A core assumption of existing approaches is that DCOP solutions can be easily understood, accepted, and adopted, which may not hold, as evidenced by the large body of literature on Explainable AI. In this paper, we propose the Explainable DCOP (X-DCOP) model, which extends a DCOP to include its solution and a contrastive query for that solution. We formally define some key properties that contrastive explanations must satisfy for them to be considered as valid solutions to X-DCOPs as well as theoretical results on the existence of such valid explanations. To solve X-DCOPs, we propose a distributed framework as well as several optimizations and suboptimal variants to find valid explanations. We also include a human user study that showed that users, not surprisingly, prefer shorter explanations over longer ones. Our empirical evaluations showed that our approach can scale to large problems, and the different variants provide different options for trading off explanation lengths for smaller runtimes. Thus, our model and algorithmic contributions extend the state of the art by reducing the barrier for users to understand DCOP solutions, facilitating their adoption in more real-world applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube