Semantic Decomposition and Selective Context Filtering -- Text Processing Techniques for Context-Aware NLP-Based Systems (2502.14048v1)
Abstract: In this paper, we present two techniques for use in context-aware systems: Semantic Decomposition, which sequentially decomposes input prompts into a structured and hierarchal information schema in which systems can parse and process easily, and Selective Context Filtering, which enables systems to systematically filter out specific irrelevant sections of contextual information that is fed through a system's NLP-based pipeline. We will explore how context-aware systems and applications can utilize these two techniques in order to implement dynamic LLM-to-system interfaces, improve an LLM's ability to generate more contextually cohesive user-facing responses, and optimize complex automated workflows and pipelines.
Collections
Sign up for free to add this paper to one or more collections.