Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partially Observable Gaussian Process Network and Doubly Stochastic Variational Inference (2502.13905v1)

Published 19 Feb 2025 in cs.LG and cs.AI

Abstract: To reduce the curse of dimensionality for Gaussian processes (GP), they can be decomposed into a Gaussian Process Network (GPN) of coupled subprocesses with lower dimensionality. In some cases, intermediate observations are available within the GPN. However, intermediate observations are often indirect, noisy, and incomplete in most real-world systems. This work introduces the Partially Observable Gaussian Process Network (POGPN) to model real-world process networks. We model a joint distribution of latent functions of subprocesses and make inferences using observations from all subprocesses. POGPN incorporates observation lenses (observation likelihoods) into the well-established inference method of deep Gaussian processes. We also introduce two training methods for POPGN to make inferences on the whole network using node observations. The application to benchmark problems demonstrates how incorporating partial observations during training and inference can improve the predictive performance of the overall network, offering a promising outlook for its practical application.

Summary

We haven't generated a summary for this paper yet.