Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Kernel Mean Embedding Topology: Weak and Strong Forms for Stochastic Kernels and Implications for Model Learning (2502.13486v1)

Published 19 Feb 2025 in eess.SY, cs.LG, cs.SY, math.OC, math.ST, and stat.TH

Abstract: We introduce a novel topology, called Kernel Mean Embedding Topology, for stochastic kernels, in a weak and strong form. This topology, defined on the spaces of Bochner integrable functions from a signal space to a space of probability measures endowed with a Hilbert space structure, allows for a versatile formulation. This construction allows one to obtain both a strong and weak formulation. (i) For its weak formulation, we highlight the utility on relaxed policy spaces, and investigate connections with the Young narrow topology and Borkar (or $w*$)-topology, and establish equivalence properties. We report that, while both the $w*$-topology and kernel mean embedding topology are relatively compact, they are not closed. Conversely, while the Young narrow topology is closed, it lacks relative compactness. (ii) We show that the strong form provides an appropriate formulation for placing topologies on spaces of models characterized by stochastic kernels with explicit robustness and learning theoretic implications on optimal stochastic control under discounted or average cost criteria. (iii) We show that this topology possesses several properties making it ideal to study optimality, approximations, robustness and continuity properties. In particular, the kernel mean embedding topology has a Hilbert space structure, which is particularly useful for approximating stochastic kernels through simulation data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.