Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 191 tok/s Pro
2000 character limit reached

Aspect-Guided Multi-Level Perturbation Analysis of Large Language Models in Automated Peer Review (2502.12510v1)

Published 18 Feb 2025 in cs.CL

Abstract: We propose an aspect-guided, multi-level perturbation framework to evaluate the robustness of LLMs in automated peer review. Our framework explores perturbations in three key components of the peer review process-papers, reviews, and rebuttals-across several quality aspects, including contribution, soundness, presentation, tone, and completeness. By applying targeted perturbations and examining their effects on both LLM-as-Reviewer and LLM-as-Meta-Reviewer, we investigate how aspect-based manipulations, such as omitting methodological details from papers or altering reviewer conclusions, can introduce significant biases in the review process. We identify several potential vulnerabilities: review conclusions that recommend a strong reject may significantly influence meta-reviews, negative or misleading reviews may be wrongly interpreted as thorough, and incomplete or hostile rebuttals can unexpectedly lead to higher acceptance rates. Statistical tests show that these biases persist under various Chain-of-Thought prompting strategies, highlighting the lack of robust critical evaluation in current LLMs. Our framework offers a practical methodology for diagnosing these vulnerabilities, thereby contributing to the development of more reliable and robust automated reviewing systems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.