Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local well-posedness for a system of modified KdV equations in modulation spaces (2502.12423v2)

Published 18 Feb 2025 in math.AP

Abstract: In this work, we consider the initial value problem (IVP) for a system of modified Korteweg-de Vries (mKdV) equations \begin{equation*} \begin{cases} \partial_t v + \partial_x3 v+ \partial_x (v w2) = 0, \hspace{0.98 cm} v(x,0)=\psi(x),\ \partial_t w + \alpha \partial_x3 w+\partial_x (v2 w) = 0,\hspace{0.5 cm} w(x,0)=\phi(x). \end{cases} \end{equation*} The main interest is in addressing the well-posedness issues of the IVP when the initial data are considered in the modulation space $M_s{2,p}(\mathbb{R})$, $p\geq 2$. In the case when $0<\alpha\ne 1$, we derive new trilinear estimates in these spaces and prove that the IVP is locally well-posed for data in $M_s{2,p}(\mathbb{R})$ whenever $s> \frac14-\frac{1}{p}$ and $p\geq 2$.

Summary

We haven't generated a summary for this paper yet.