Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 236 tok/s Pro
2000 character limit reached

Exploiting Task Relationships for Continual Learning Using Transferability-Aware Task Embeddings (2502.11609v2)

Published 17 Feb 2025 in cs.LG

Abstract: Continual learning (CL) has been a critical topic in contemporary deep neural network applications, where higher levels of both forward and backward transfer are desirable for an effective CL performance. Existing CL strategies primarily focus on task models, either by regularizing model updates or by separating task-specific and shared components, while often overlooking the potential of leveraging inter-task relationships to enhance transfer. To address this gap, we propose a transferability-aware task embedding, termed H-embedding, and construct a hypernet framework under its guidance to learn task-conditioned model weights for CL tasks. Specifically, H-embedding is derived from an information theoretic measure of transferability and is designed to be online and easy to compute. Our method is also characterized by notable practicality, requiring only the storage of a low-dimensional task embedding per task and supporting efficient end-to-end training. Extensive evaluations on benchmarks including CIFAR-100, ImageNet-R, and DomainNet show that our framework performs prominently compared to various baseline and SOTA approaches, demonstrating strong potential in capturing and utilizing intrinsic task relationships. Our code is publicly available at https://anonymous.4open.science/r/H-embedding_guided_hypernet/.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.