Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 463 tok/s Pro
Kimi K2 235 tok/s Pro
2000 character limit reached

Uncertainty-Aware Search and Value Models: Mitigating Search Scaling Flaws in LLMs (2502.11155v1)

Published 16 Feb 2025 in cs.AI and cs.CL

Abstract: Value model-guided search is effective in steering the generation but suffers from scaling flaws: Its superiority diminishes with larger sample sizes, underperforming non-search baselines. This limitation arises from reliability degradation in value models in unseen reasoning paths. To address this, we propose an uncertainty-aware search framework that includes two key components: (1) uncertainty-aware value models that incorporate uncertainty into predictions, and (2) an uncertainty-aware selection process using the proposed efficient Group Thompson Sampling algorithm. Experiments on GSM8K show that our method mitigates search scaling flaws, achieving 90.5% coverage at 16 samples compared to 85.8% for conventional value-guided search. This work establishes the first systematic integration of uncertainty quantification in LLM search paradigms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.