Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SyncSpeech: Low-Latency and Efficient Dual-Stream Text-to-Speech based on Temporal Masked Transformer (2502.11094v1)

Published 16 Feb 2025 in cs.SD and cs.AI

Abstract: This paper presents a dual-stream text-to-speech (TTS) model, SyncSpeech, capable of receiving streaming text input from upstream models while simultaneously generating streaming speech, facilitating seamless interaction with LLMs. SyncSpeech has the following advantages: Low latency, as it begins generating streaming speech upon receiving the second text token; High efficiency, as it decodes all speech tokens corresponding to the each arrived text token in one step. To achieve this, we propose a temporal masked transformer as the backbone of SyncSpeech, combined with token-level duration prediction to predict speech tokens and the duration for the next step. Additionally, we design a two-stage training strategy to improve training efficiency and the quality of generated speech. We evaluated the SyncSpeech on both English and Mandarin datasets. Compared to the recent dual-stream TTS models, SyncSpeech significantly reduces the first packet delay of speech tokens and accelerates the real-time factor. Moreover, with the same data scale, SyncSpeech achieves performance comparable to that of traditional autoregressive-based TTS models in terms of both speech quality and robustness. Speech samples are available at https://SyncSpeech.github.io/}{https://SyncSpeech.github.io/.

Summary

We haven't generated a summary for this paper yet.