Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
41 tokens/sec
GPT-5 Medium
23 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
96 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

Privacy Preservation through Practical Machine Unlearning (2502.10635v2)

Published 15 Feb 2025 in cs.LG and cs.CR

Abstract: Machine Learning models thrive on vast datasets, continuously adapting to provide accurate predictions and recommendations. However, in an era dominated by privacy concerns, Machine Unlearning emerges as a transformative approach, enabling the selective removal of data from trained models. This paper examines methods such as Naive Retraining and Exact Unlearning via the SISA framework, evaluating their Computational Costs, Consistency, and feasibility using the $\texttt{HSpam14}$ dataset. We explore the potential of integrating unlearning principles into Positive Unlabeled (PU) Learning to address challenges posed by partially labeled datasets. Our findings highlight the promise of unlearning frameworks like $\textit{DaRE}$ for ensuring privacy compliance while maintaining model performance, albeit with significant computational trade-offs. This study underscores the importance of Machine Unlearning in achieving ethical AI and fostering trust in data-driven systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)