Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Proxies for LLM Robustness Evaluation (2502.10487v1)

Published 14 Feb 2025 in cs.CR and cs.AI

Abstract: Evaluating the robustness of LLMs to adversarial attacks is crucial for safe deployment, yet current red-teaming methods are often prohibitively expensive. We compare the ability of fast proxy metrics to predict the real-world robustness of an LLM against a simulated attacker ensemble. This allows us to estimate a model's robustness to computationally expensive attacks without requiring runs of the attacks themselves. Specifically, we consider gradient-descent-based embedding-space attacks, prefilling attacks, and direct prompting. Even though direct prompting in particular does not achieve high ASR, we find that it and embedding-space attacks can predict attack success rates well, achieving $r_p=0.87$ (linear) and $r_s=0.94$ (Spearman rank) correlations with the full attack ensemble while reducing computational cost by three orders of magnitude.

Summary

We haven't generated a summary for this paper yet.