Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Neural Network Training Method Based on Neuron Connection Coefficient Adjustments (2502.10414v1)

Published 25 Jan 2025 in cs.NE and cs.LG

Abstract: In previous studies, we introduced a neural network framework based on symmetric differential equations, along with one of its training methods. In this article, we present another training approach for this neural network. This method leverages backward signal propagation and eliminates reliance on the traditional chain derivative rule, offering a high degree of biological interpretability. Unlike the previously introduced method, this approach does not require adjustments to the fixed points of the differential equations. Instead, it focuses solely on modifying the connection coefficients between neurons, closely resembling the training process of traditional multilayer perceptron (MLP) networks. By adopting a suitable adjustment strategy, this method effectively avoids certain potential local minima. To validate this approach, we tested it on the MNIST dataset and achieved promising results. Through further analysis, we identified certain limitations of the current neural network architecture and proposed measures for improvement.

Summary

We haven't generated a summary for this paper yet.