Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

An Efficient Large Recommendation Model: Towards a Resource-Optimal Scaling Law (2502.09888v1)

Published 14 Feb 2025 in cs.IR

Abstract: The pursuit of scaling up recommendation models confronts intrinsic tensions between expanding model capacity and preserving computational tractability. While prior studies have explored scaling laws for recommendation systems, their resource-intensive paradigms -- often requiring tens of thousands of A100 GPU hours -- remain impractical for most industrial applications. This work addresses a critical gap: achieving sustainable model scaling under strict computational budgets. We propose Climber, a resource-efficient recommendation framework comprising two synergistic components: the ASTRO model architecture for algorithmic innovation and the TURBO acceleration framework for engineering optimization. ASTRO (Adaptive Scalable Transformer for RecOmmendation) adopts two core innovations: (1) multi-scale sequence partitioning that reduces attention complexity from O(n2d) to O(n2d/Nb) via hierarchical blocks, enabling more efficient scaling with sequence length; (2) dynamic temperature modulation that adaptively adjusts attention scores for multimodal distributions arising from inherent multi-scenario and multi-behavior interactions. Complemented by TURBO (Two-stage Unified Ranking with Batched Output), a co-designed acceleration framework integrating gradient-aware feature compression and memory-efficient Key-Value caching, Climber achieves 5.15x throughput gains without performance degradation. Comprehensive offline experiments on multiple datasets validate that Climber exhibits a more ideal scaling curve. To our knowledge, this is the first publicly documented framework where controlled model scaling drives continuous online metric growth (12.19% overall lift) without prohibitive resource costs. Climber has been successfully deployed on Netease Cloud Music, one of China's largest music streaming platforms, serving tens of millions of users daily.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.