Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

SigGate: Enhancing Recurrent Neural Networks with Signature-Based Gating Mechanisms (2502.09318v1)

Published 13 Feb 2025 in cs.LG

Abstract: In this paper, we propose a novel approach that enhances recurrent neural networks (RNNs) by incorporating path signatures into their gating mechanisms. Our method modifies both Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures by replacing their forget and reset gates, respectively, with learnable path signatures. These signatures, which capture the geometric features of the entire path history, provide a richer context for controlling information flow through the network's memory. This modification allows the networks to make memory decisions based on the full historical context rather than just the current input and state. Through experimental studies, we demonstrate that our Signature-LSTM (SigLSTM) and Signature-GRU (SigGRU) models outperform their traditional counterparts across various sequential learning tasks. By leveraging path signatures in recurrent architectures, this method offers new opportunities to enhance performance in time series analysis and forecasting applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.