Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shortcut Learning Susceptibility in Vision Classifiers (2502.09150v1)

Published 13 Feb 2025 in cs.LG and cs.CV

Abstract: Shortcut learning, where machine learning models exploit spurious correlations in data instead of capturing meaningful features, poses a significant challenge to building robust and generalizable models. This phenomenon is prevalent across various machine learning applications, including vision, natural language processing, and speech recognition, where models may find unintended cues that minimize training loss but fail to capture the underlying structure of the data. Vision classifiers such as Convolutional Neural Networks (CNNs), Multi-Layer Perceptrons (MLPs), and Vision Transformers (ViTs) leverage distinct architectural principles to process spatial and structural information, making them differently susceptible to shortcut learning. In this study, we systematically evaluate these architectures by introducing deliberate shortcuts into the dataset that are positionally correlated with class labels, creating a controlled setup to assess whether models rely on these artificial cues or learn actual distinguishing features. We perform both quantitative evaluation by training on the shortcut-modified dataset and testing them on two different test sets -- one containing the same shortcuts and another without them -- to determine the extent of reliance on shortcuts. Additionally, qualitative evaluation is performed by using network inversion-based reconstruction techniques to analyze what the models internalize in their weights, aiming to reconstruct the training data as perceived by the classifiers. We evaluate shortcut learning behavior across multiple benchmark datasets, including MNIST, Fashion-MNIST, SVHN, and CIFAR-10, to compare the susceptibility of different vision classifier architectures to shortcut reliance and assess their varying degrees of sensitivity to spurious correlations.

Summary

We haven't generated a summary for this paper yet.