Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Salience-Invariant Consistent Policy Learning for Generalization in Visual Reinforcement Learning (2502.08336v2)

Published 12 Feb 2025 in cs.AI

Abstract: Generalizing policies to unseen scenarios remains a critical challenge in visual reinforcement learning, where agents often overfit to the specific visual observations of the training environment. In unseen environments, distracting pixels may lead agents to extract representations containing task-irrelevant information. As a result, agents may deviate from the optimal behaviors learned during training, thereby hindering visual generalization.To address this issue, we propose the Salience-Invariant Consistent Policy Learning (SCPL) algorithm, an efficient framework for zero-shot generalization. Our approach introduces a novel value consistency module alongside a dynamics module to effectively capture task-relevant representations. The value consistency module, guided by saliency, ensures the agent focuses on task-relevant pixels in both original and perturbed observations, while the dynamics module uses augmented data to help the encoder capture dynamic- and reward-relevant representations. Additionally, our theoretical analysis highlights the importance of policy consistency for generalization. To strengthen this, we introduce a policy consistency module with a KL divergence constraint to maintain consistent policies across original and perturbed observations.Extensive experiments on the DMC-GB, Robotic Manipulation, and CARLA benchmarks demonstrate that SCPL significantly outperforms state-of-the-art methods in terms of generalization. Notably, SCPL achieves average performance improvements of 14\%, 39\%, and 69\% in the challenging DMC video hard setting, the Robotic hard setting, and the CARLA benchmark, respectively.Project Page: https://sites.google.com/view/scpl-rl.

Summary

We haven't generated a summary for this paper yet.