Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on Data Curation for Visual Contrastive Learning: Why Crafting Effective Positive and Negative Pairs Matters (2502.08134v1)

Published 12 Feb 2025 in cs.CV

Abstract: Visual contrastive learning aims to learn representations by contrasting similar (positive) and dissimilar (negative) pairs of data samples. The design of these pairs significantly impacts representation quality, training efficiency, and computational cost. A well-curated set of pairs leads to stronger representations and faster convergence. As contrastive pre-training sees wider adoption for solving downstream tasks, data curation becomes essential for optimizing its effectiveness. In this survey, we attempt to create a taxonomy of existing techniques for positive and negative pair curation in contrastive learning, and describe them in detail.

Summary

We haven't generated a summary for this paper yet.