Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp Anti-Concentration Inequalities for Extremum Statistics via Copulas (2502.07699v1)

Published 11 Feb 2025 in math.ST, math.PR, and stat.TH

Abstract: We derive sharp upper and lower bounds for the pointwise concentration function of the maximum statistic of $d$ identically distributed real-valued random variables. Our first main result places no restrictions either on the common marginal law of the samples or on the copula describing their joint distribution. We show that, in general, strictly sublinear dependence of the concentration function on the dimension $d$ is not possible. We then introduce a new class of copulas, namely those with a convex diagonal section, and demonstrate that restricting to this class yields a sharper upper bound on the concentration function. This allows us to establish several new dimension-independent and poly-logarithmic-in-$d$ anti-concentration inequalities for a variety of marginal distributions under mild dependence assumptions. Our theory improves upon the best known results in certain special cases. Applications to high-dimensional statistical inference are presented, including a specific example pertaining to Gaussian mixture approximations for factor models, for which our main results lead to superior distributional guarantees.

Summary

We haven't generated a summary for this paper yet.