Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Investigating the Zone of Proximal Development of Language Models for In-Context Learning (2502.06990v1)

Published 10 Feb 2025 in cs.CL

Abstract: In this paper, we introduce a learning analytics framework to analyze the in-context learning (ICL) behavior of LLMs through the lens of the Zone of Proximal Development (ZPD), an established theory in educational psychology. ZPD delineates the space between what a learner is capable of doing unsupported and what the learner cannot do even with support. We adapt this concept to ICL, measuring the ZPD of LLMs based on model performance on individual examples with and without ICL. Furthermore, we propose an item response theory (IRT) model to predict the distribution of zones for LLMs. Our findings reveal a series of intricate and multifaceted behaviors of ICL, providing new insights into understanding and leveraging this technique. Finally, we demonstrate how our framework can enhance LLM in both inference and fine-tuning scenarios: (1) By predicting a model's zone of proximal development, we selectively apply ICL to queries that are most likely to benefit from demonstrations, achieving a better balance between inference cost and performance; (2) We propose a human-like curriculum for fine-tuning, which prioritizes examples within the model's ZPD. The curriculum results in improved performance, and we explain its effectiveness through an analysis of the training dynamics of LLMs.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets