Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Mix Data or Merge Models? Balancing the Helpfulness, Honesty, and Harmlessness of Large Language Model via Model Merging (2502.06876v3)

Published 8 Feb 2025 in cs.CL, cs.AI, and cs.LG

Abstract: Achieving balanced alignment of LLMs in terms of Helpfulness, Honesty, and Harmlessness (3H optimization) constitutes a cornerstone of responsible AI. Existing methods like data mixture strategies face limitations, including heavy reliance on expert knowledge and conflicting optimization signals. While model merging offers parameter-level conflict-resolution strategies through integrating specialized models' parameters, its potential for 3H optimization remains underexplored. This paper systematically compares the effectiveness of model merging and data mixture methods in constructing 3H-aligned LLMs for the first time, revealing previously overlooked collaborative and conflict relationships among the 3H dimensions and discussing the advantages and drawbacks of data mixture (\textit{data-level}) and model merging (\textit{parameter-level}) methods in mitigating the conflict for balanced 3H optimization. Specially, we propose a novel \textbf{R}eweighting \textbf{E}nhanced task \textbf{S}ingular \textbf{M}erging method, \textbf{RESM}, through outlier weighting and sparsity-aware rank selection strategies to address the challenges of preference noise accumulation and layer sparsity adaptation inherent in 3H-aligned LLM merging. Extensive evaluations can verify the effectiveness and robustness of RESM compared to previous data mixture (2\%-5\% gain) and model merging (1\%-3\% gain) methods in achieving balanced LLM alignment. We release our models through \href{https://huggingface.co/Jinluan}{3H\_Merging} for further investigations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.