Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 49 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Many-Task Federated Fine-Tuning via Unified Task Vectors (2502.06376v1)

Published 10 Feb 2025 in cs.LG and cs.CV

Abstract: Federated Learning (FL) traditionally assumes homogeneous client tasks; however, in real-world scenarios, clients often specialize in diverse tasks, introducing task heterogeneity. To address this challenge, Many-Task FL (MaT-FL) has emerged, enabling clients to collaborate effectively despite task diversity. Existing MaT-FL approaches rely on client grouping or personalized layers, requiring the server to manage individual models and failing to account for clients handling multiple tasks. We propose MaTU, a MaT-FL approach that enables joint learning of task vectors across clients, eliminating the need for clustering or client-specific weight storage at the server. Our method introduces a novel aggregation mechanism that determines task similarity based on the direction of clients task vectors and constructs a unified task vector encapsulating all tasks. To address task-specific requirements, we augment the unified task vector with lightweight modulators that facilitate knowledge transfer among related tasks while disentangling dissimilar ones. Evaluated across 30 datasets, MaTU achieves superior performance over state-of-the-art MaT-FL approaches, with results comparable to per-task fine-tuning, while delivering significant communication savings.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.