Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Discourse-Driven Evaluation: Unveiling Factual Inconsistency in Long Document Summarization (2502.06185v1)

Published 10 Feb 2025 in cs.CL and cs.AI

Abstract: Detecting factual inconsistency for long document summarization remains challenging, given the complex structure of the source article and long summary length. In this work, we study factual inconsistency errors and connect them with a line of discourse analysis. We find that errors are more common in complex sentences and are associated with several discourse features. We propose a framework that decomposes long texts into discourse-inspired chunks and utilizes discourse information to better aggregate sentence-level scores predicted by natural language inference models. Our approach shows improved performance on top of different model baselines over several evaluation benchmarks, covering rich domains of texts, focusing on long document summarization. This underscores the significance of incorporating discourse features in developing models for scoring summaries for long document factual inconsistency.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)